Baptista SL, Carvalho LC, Romaní A, Domingues L (2020) Development of a sustainable bioprocess based on green technologies for xylitol production from corn cob. Industrial Crops and Products 156, 112867. https://doi.org/10.1016/j.indcrop.2020.112867.
Abstract: In this work, a sustainable and environmental friendly strategy for the biotechnological production of xylitol was proposed and optimized. For this purpose, corn cob was hydrothermally pretreated at high solid loadings (25%) for an efficient solubilization of xylan in hemicellulose derived compounds, xylooligosaccharides and xylose. Xylose enriched streams were obtained from the enzymatic saccharification of the whole slurry (solid and liquid fraction) resulting from the autohydrolysis pretreatment. The xylitol production in a simultaneous saccharification and fermentation (SSF) process, by the recombinant Saccharomyces cerevisiae PE-2-GRE3 strain, was optimized using different enzyme and substrate (pretreated corn cob solid) loadings by an experimental design. This study demonstrated a significant effect of substrate loading on the production process achieving a maximal concentration of 47 g/L with 6.7 % of pretreated corn cob and 24 FPU/g of enzyme loading, with partial detoxification of the hydrolysate. Furthermore, the 1.42-fold increase in xylitol titer and 1.56-fold increase in productivity achieved in a SSF using an acetic acid free-hydrolysate evidenced the negative effect of acetic acid on the yeast-based xylitol production process. The combination of these green technologies and the optimization of the proposed strategy enhanced the overall xylitol production through the valorization of corn cob.
Link to journal article: https://doi.org/10.1016/j.indcrop.2020.112867.
Link to open access repository: http://hdl.handle.net/1822/67089.
**
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.